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1. One-dimensional Splines

The purpose of this section is to give an introduction to some outstanding

properties of one-dimensional splines. We are not interested in giving a very

detailed discussion of this vast subject but only in pointing out some results

which serve to illustrate some properties of multivariate splines.

1.1. The Cubic Spline

Consider knots t  < t 2 < t 3 < ••• < to of a real interval [0,T] and

real data 
yl' J2'	

yn. One of the oldest problems Lonsidered by mathema-

ticians and engineers has been that of finding a "smooth" curve joining the

points (ti ,yi ) E IR2 . Or, in mathematical terms, to find a function

g: [0,T] -► IR such that g takes the value y 	 at ti i = 1,...,n.

g(t i) = yi	i = 1,...,n
	

(1.1.1)

Obviously, this problem does not have a unique solution and the choice

of a solution will depend on many factors, some of which are:

-- Smoothness properties

-- Convergence properties

-- Cost of computation.

Even if the first two properties have a great importance, the third one is

usually the one determining the interpolant to be used. Among the solutions

used in the past, the most popular one was the polynomial interpolation. As

it is known, we can find a unique polynomial p  of degree n-1 satisfying

(1.1.1). Moreover, an explicit expression for p  can be given in terms of

Lagrange polynomials
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where

II (x - xj)

i

n
W(x) =	 1I (x-xi)

i=1

Thus, the solution p  can be easily written as a linear combination

of well-known polynomials. This is a very interesting property, even if

(1.1.2) is not used for practical calculations because it is cheaper to use

the Newton's formula (cf. . [ 6 1).

Another interesting property of the interpolation polynomial is that it

can be differentiated infinitely many times and each derivative is still a

polynomial and can be easily evaluated using a Horner's scheme. This last

assertion is only partly true because the evaluation of a polynomial of

degree n-1 requires n-1 multiplications and for large n this could become

very expensive.

However, the main trouble arising with polynomail interpolation is mainly

due to the fact that they are too smooth and hence too inflexible,. This leads

to oscillations when the number of points is high (more than 20). Indeed,

the interpolation polynomials have very bad approximation properties except

for a small class of analytic functions 	 (cf. [ 6 1).

Schoemberg [ 25 ] found the way to avoid the problems coming from the

inflexibility of polynomials and still keep their nice properties: hE intro-

41
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duced the use of piecewise polynomials matched together by continuity condi-

tions. He called the new class of functions: splines.

For a general description of polynomial splines the reader is referred

to [ 1 ], [ 9 ], [ 26 ]. In this section we will only describe one

of the most popular splines: the cubic spline.

Let S 3 be the set of all functions [t l ,tn I satisfying the following

properties:

CS1: a is a cubic polynomial in [tit 
i+1]' 

1 =

CS 2: a E C2(tlftn)

It is well known that S 3 is a linear space of dimension 	 n+2. So, if

we want to use as interpolant a function o E S 3 we must impose two additional

conditions in order to determine the n+2 free parameters. Among the most

popular conditions we have:

I. Natural	 Q"(t1) = Q"(tn) = 0

II. Periodic	 6'(t1) = Q'(tn)

Q"(tl) = Q"(tn)

III. Hermite	 61(tl)	 yn

'
n	 yn

Optimal convergence rates are obtained using conditions type II or III.

In these lectures we will deal only with natural conditions. For a more detailed

description of convergence rates the reader is referred to [ 9 ], [ 26 ]

and the references therein.

4
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Let S3 be the linear space of natural cubic splines, that is, the

space of elements of S 3 satisfying condition I. It is an n-dimensional

linear space and for any yl , ..., yn E R there exist one and only one

element in S 3 such that

a(ti) = y 	 i = 1,...,n .

This new interpolant keeps some of the most important properties of

polynomials:

1) The evaluation of a at a given point t only requires multiplica-

tions and additions

2) The integral or derivative of a is still a piecewise polynomial.

The advantage of this kind of interpolant is that we get "good" conver-

gence rates even for functions being only continuous. (For details, see

[ 9 ],	 [ 26 D.

Of course we do not have an explicit formula like (1.1.2) and we will have

to solve a linear system in order to find the n free parameters determining

a. Many methods are available, but we would like to point out one that is

now able to give a generalization of splines to two and higher dimen-

sions. It is the B-spline method. (Here B stands for basis) (cf. [ 5 ],

I	 9	 ],	 [ 26 ])

The idea is to construct a basis for S 3 with local support, that is,

such that each element in the basis has the smallest possible support. Then

the evaluation of a at a point t needs the calculation of a linear combina-

tion with only a small number of nonzero terms.

More precisely, let x-2 5 x-1 <_ ••• s x  <-	 5 n+3 be the extended

partition

I

)^J
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x-2	 x-1 = x0 = t1

xi 	ti	 i = 1,...,n

n+l = xn+2 = xn+3 = to

Now define the n+2 B-splines by the formula

Bi (t) - (-l)m(xi+2 xi-2 ) 6 	 ,x	 ,x ,x	 ^x	 (t -x)+ ,
i-2 i -1 i i+1 i+2	 (1.1.5)

t1 <- t < to	 i = 0,...,n+l

where da	
a f is the divided difference of f with respect to

all ..., ap . And the truncated power function (t-x)+ is given by

Q	 t < x
(t-x)3	
3 (t-x)	 t z x

For t = t we have
n

Bi (tn )	 lim- Bi(t)
t-Oltn

The set {BO , ... .Bn+1} is a basis for S 3 with the following interesting

properties:

Theorem 1.1.1. The B-splines 
B
O' " '' Bn+1 defined by (1.1.5) - (1.1.7)

satisfy

Bi(t) =	 0 t	
[xi-2'x1+2)

Bi (t) >	 0
t E (xi-29x1+2)
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Moreover, for any t E [ti nt. ] we have

n+1

i=0 B
i (t) = 1
	

(1.1.10)

Proof. See [ 26 ].

These remarkable properties imply among others that the linear system to

be solved has a band matrix. More precisely, the matrix is tridiagonal in

the cubic case. Another interesting fact extensively used for computational

purposes is the recurrence relation which allows a very simple algorithm for

the calculation of B i(t). For details see [ 26 ].

As we shall see in other sections, the first extension of spline techniques

to higher dimensions has been given using tensor products of one-dimensional

splines. The small support basis for that case is easily found using tensor

products of B-splines. This kind of technique can be used in interpolation,

smoothing or curve fitting, as we shall see later.

More recently there has been a lot of interest in the development of multi-

dimens'.oral B-splines. We are not going to discuss this approach during these

lectures and the interested reader is referred to [ 7 ], [ 8 ] and

the references therein.

Now we turn our attention to a different property of polynomial splines

which allows a very natural extension to higher dimensions. We begin with a

lemma.

Lemma 1.1.2. Let g e C2 [tl ,tn 1, then for any s E S 3 we have:

t

J 
n 

g"(t)s"(t) dt	 I (s IVI
(ti)
	
sIII(ti)) 	 g(t i )	 (1.1.11)

t 
	 i=1
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where

s^..(tl)	 = 0

s ,.,
( tn )	 0

Proof. Integrating by parto, using the fact that s"' is piecewise constant

and rearranging terms we get the desired result.

Now consider any function U in C 2 [tl ,tnI interpolating the data

yl' ..., yn at tl , ..., tn . And let a be the unique element in S 3 inter-

polating the data. Then from (1.1.11) we have

t
n

f	 (U"(t) - a"(t)) a"(t) At = 0

t 

Or, if we extend a to [0,T] by

a(tl ) + (t - tl )a'(tl )	 t < t,

G(t)	 a(t)	 t  <_ t s to

a(tn) + (t- tn)a' ( tn)	 t > to

we have

T
f (u"(t) - o"(t)) a"(t) dt - 0
	

(1.1.12)
0

More precisely, we have the following:

Theorem 1.1.3. For any p F H 2 [0,T] interpolating y 1 ..., yn at t
3
, ..., tn,

we have

(P-G, 0) = 0

where a is the natural cubic spline interpolating the data and

IF
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T
(u,v)	 J u"(t) v"(t) dt	 (1.1.13)

0

Proof. See [ 19 ],	 [ 26 ].

From this theorem, usually called the First Integral Relation, we immedia-

tely get the following property that is usually taken as an equivalent defini-

tion of the natural cubic spline:

Theorem 1.1.4. The natural cubic spline a interpolating yl' " " y 

at ti , ..., y  is the unique solution to the following minimization problem.

(1.1.14)Minimize (u, U)

Uely

where

Iy	 iy F H2 [O,T]	 u(ti) = yi , i - 1,...,n)

Proof. From the First Integral Relation we get

(p , 1j) - (u-0+0, u-0+0)

r0
+ 2(a,/ y-a) + (0,a)

- (0-0, u-0) + (0,0) > (000) vEI	 .y
This proves that a minimizes 	 (•,•) over Iy . The uniqueness comes

from the fact that the kernel of the semi-norm (•,•) is P 1 the set of

polynomials of degree one whose intersection with IO = { u E H2 [0,T]	 v(t i)- 0)

is the element 0. This concludes the proof.

g
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This variational definition of the natural cubic splines has lead to

several generalizations in one and many dimensions. We are going to study

some of these during these lectures. For additional details see [ '- ],

[ 7 ], [ 9 ], [ 13 ], [ 19 ], [ 26 ] and the references therein.

1.2. Smoothing Splines

Consider now the case where the data are noisy. This is the case in most

practical problems. Assume the model

yi M f(t i) + C 	 i - 1,...,n	 (1.2.1)

where f is the "smooth" unknown function to be approximated and the errors

C I O i - 1,... ,n are assumed to be realizations of independent identically

distributed normal random variables with

E[CI ] = 0

E[C2 ] M v2	i ^ 11...0

E[E ICi ] . 0	 1 0 j .

To solve this problem Schoemberg introduced the smoothing spline. This

spline is the unique solution to the following minimization problem.

Minimize ajT(v"(t)) 2dt + n

	

	 (u(t i) - y i ) 2^	 (1.2.2)
s

u 9H 2 [O,T]	 i

Where 1 > 0 is the smoothing parz_meter controlling the tradeoff between

the smoothness of the solution measured by ( U,y) and the approximation to

n
the data measured by n
	 (u(ti) - yi)2
i•1	

.

.*1
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The solution to (1.2.2) is an element of S 3, that is, a natural cubic

spline. Moreover, let f2 be the nxn symmetric semi-positive definite matrix

such that

z  n z	 min	 (0, u)	 (1.2.3.)

paH2[0,T]

u(ti)-zi
i-i,...,n

This riatrix is well defined because the transformation associating the

interpolating cubic spline to the data z l , ..., 2  is linear and (•,•) is

gczdratic.

With this definition (1.2.2) can be restated as:

n
Minimize Minimize (a(u,u) + , ^ (u(t ) - y )2

Z- UEH2[0,T]	 ni- 1	
i	 i

U(ti)-zi

Or,

n
Minimize a z TS2z + n I ( y i - zi) 2	 (1.2.4)

zCIP I	 i-1

And the solution z to this problem is then given by

i - (I + nXn) —ly .	 (1.2.5)

If we call o n ,^ to the smoothing spline then z^is the vector of the

values c'_ a , at the knots

zi - an X (t i )	 i - 1,...,n	 (1.[.6)

h
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[T1 ^I

1
z i	 1 + as yi

(1.2.].1)

S

As we shall see later, ( 1.2.5) is not of practical use but it allows us

toive nice interpretation of the effect of this procedure on the data.g	 a	 .p	 i p	 a
E

being symmetric and positive semi-definite, its eigenvalues are positive

real numbers. Moreover, we have (cf. [ 11 ]) for pi , i - 1,...,n; the

eigenvalues of S

0 = P  = p2 < p3 < ... < P  .	 (1.2.7)

Also, for n sufficiently large and i > 10 (for practical purposes), we

have (cf. [ 33 J),
4

Pi ti a n
	

(1.2.8)

Let Q be the orthogonal matrix diagonalizing Q, then

S2 = Q E Q*	 (1.2.9)

where E = diag (pl , p29	 pn)• And

z = Q(I + nX£.)-1Q*y

or

i = (I + naE) -ly	 (1.2.10)

with

z = Q*i

y = Q*y

If we write (1.2.10) in terms of each component and use (1.2.8) we obtain
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Thus we are filtering the data using a low-pass Butterworth type filter
-1

with cutting frequency (aa)^° to be chosen.

The choice of a from the data is a very complicated problem that has

received a lot of attention during the last years. For details see [ 4 ],

[ 17 ], [ 30 ], [ 31 ], [ 37 ], [ 38 ]. We are just going to describe

two of them. The first one was proposed by Reinsch [ 24 ] and is closely

related to the methods for choosing the regularization parameter in Tikhonov

Regularization [ 38 ].

The idea is to solve the following equation for

n

n
 Llyi 

-°n X(ti)l2 2
 '

or, equivalently

n	 n2x2 2
Pi cc i y2 a2

n 
iGl 

(1+napi) 
3 

i

(1.2.12)

an equation that can be solved using bisection or another nesting method.

As it can be seen, the method is indeed very simple and the idea is

attractive. Nevertheless thec is a lot of numerical and theoretical evidence

showing that in most cases the solution obtained by this method gives a spline

which tends to be too smooth, i.e., it tends to eliminate variations of the

true function (cf. . [ 44 ]) .

The second method is called Generalized Cross-validation and was introduced

in this form by Craven and Wabba [ 4 ]. The idea of the method is more Jiff i-

cult to introduce and the interested reader should go to their paper [ 4 ]

for a detailed description. See also [ 17 ], [ 30 ], [ 31 ].

4
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The GCV method reduces to the minimization over X of the following loss

function, usually referred to as the GCV function:

n
ncc

iL1 (yi - an,a(ti))2
VM _	 ll

ntr.(A(a))j2

where

AM _ (I + nXQ)-1

(1.2.13)

Special methods have been developed for the efficient computation of the

minimizer of V. For details see [ 30 ], [ 31 ], [ 43 ].

2. Thin Plate Svlines

In this section we introduce one of the most popular forms of bidimensional

splines and give theoretical and computational details. We have chosen to start

with these kind of splines because we think it is a natural generalization of

the popular cubic spline even if the historic development was slightly different.

2.1. Theoretical Background

Let ti	(t1,t2) 	i = 1,2,...,n be n different points of the Euclidean

plane It2 and let z l , ..., z 	 be n real numbers: the observations. As

in the one-dimensional case, we seek for a smooth function g, called the

interpolant, such that

g(t i) 
= Z 
	 i = 1,2,...,n .	 (2.1.1)

In order to define a function interpolating the data we have first to

define a domain in IR 2 containing the data points. There are many possible

choices and in some cases it will be defined by the problem itself, but while

fk

^.J
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4.1.

we have the choice we are going to take IR 2 itself as the domain of defini-

tion of the interpolant. This will allow us to use the powerful tool of

Fourier Transform. For other choices, see [ 3 ], [ 29 ]•

Following the ideas of Theorem 1.1.4, a direct generalization of the

loss function to be minimized is given by

2 2	 2 2
	 [ep2_1

2

J(U) =	
a 2	 + 2 axay	 + 
	 (2.1.2)

R2 ax	 lay 1

In order to set properly the minimization problem we have to introduce

the following function space:

D-2L 2 (]
R2

) = {U: R2-► R I Dau a L2 (R2) , la l=2}	 (2.1.3)

where a = (al ,a2), lal = (11 + a2.

D-2L2 is not equal to H2(R2). Indeed we have

H2(R2)	
c 

D-2
L2 (R 2 )	 (2.1.4)

D-2L2 is indeed a space of continuous functions (see [ 13 ], [ 14 ])

D 2L2
and	 P	 is a Hilbert space with the norm

1

	

1U1 _ [J(u) l+	 and	 u E u	 (2.1.5)

and P1 is the space of polynomials of degree 1.

	

Theorem 2.1.1. If {ti}
i=l,...,n	 1

contains at least one P -unisolvent set,

then there exists one and only one element a belonging to D -2L2 (3R 2 ) such

that

J(6)

	

	 min	 10)
jiED 2L2(R2)

u(ti) =zi

1W 	 -	
-D
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a is called the Thin Plate Spline interpolating zl , ..., Z  at

t"..., tn.

D-
2 L 2 
	 IItle

Proof.	 P	 is a Hilbert space continuously inbedded in P
	

. The set

	

1	 1

	

I 	
{U e D 

J-
L2 OR ) I u(ti ) = zi , i-1, ...,n) 	 (2.1.7)

is clearly nonvoid, and

I	 = I + F,
z	 z

^
.Ls

	 2L2
s closed in	

P	
since I z	 1+ P	

R
is closed i..	

P

	

1	 1
r

n
I z + P1 = 0 {d i (z i) } + Pl

i=1 t

and the injection from 
D-

2 
L 
2 
	 IRS

into	 is continuous.
Pl	P1	

-2 2
Then there exists a unique element 6 e D LP	 minimizing ^u^2 over

1

I z . The uniqueness of a comes from the fact that any two elements in 6

are different only in a iolynomial of degree 1 and from the hypothesis we

have 
1  

n P1 = W. //

In order to obtain the characterization of the solution we have to use

convex analysis. Let

	

0	 u e I

XI (u) _

	

+W	 otherwise

Our problem can then be put in the form

minimize	 {J(u) + X (U) }

UED `L^( R2 )	 I

?1
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and the solution a satisfies the inclusion equation

0 E 3(J+X1 )(a)	 (2.1.8)

Usl-g now the subdifferential calculus (see [ 19 ]) we get

n

0 = A2 	 -	 I x  s i	 (2.1.9)

i=1	 t

where the Xi are coefficients, b	 are Dirac measures and ^ 2a is the
ti

iterated Laplacian. Moreover, it is clear that the measure p 2a must be

orthogonal to P 1 . Then

ill ^
i P( ti) = 0	 p e P1 	(2.1.10)

Now we use the fact that (cf. [ 28 ])

p2(r2 log r) = 8

to conclude that

a 	 _	 Y t-t i ( 2 log (t-t
1

I + q(t)	 (2.1.11)
i=1

where q is a polynomial of degree 1.

For a complete proof of these results, see [ 13 ].

2.2. The Computation of a

From (2.1.11) - (2.1.10) we obtain the linear system to be solved in

al ,	 an, ccl , a2 , oc3;

t

Oka
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n
i .'X, j tJ-ti j 2 log I tJ-ti l + alti + a2t2 	 + a3 - z j

j- 1,...,n

a iti = 0
i=1

n	 (2.2.1)

iL
CC ait2 = 0
l

n
a i = 0

i=1

Or, in matrix form

K.^, + Ea - z

(2.2.2)
ETA	 = 0	 ,

where K is an nxn symmetric matrix and E is nx3 matrix.

(K)
ij
 =	 It')-t112 log ltj-til	 ,	 ( 2.2.3)

(E)il	
tl

(E)i 2 = t2	 (2.2.4)

(E) i3 = 1

Many problems arise. The first one is that if K and E are full matrices

then the solution of this system requires O(n 3) operations. This was not the

case for one-dimensional splines where the matrix involved in the calculations

had a band structure and the system can then be solved in 0(n) operations.

L
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hat (2.2.2) is ill-conditioned and a

preconditioning will be necessary to solve it successfully. Finally, from

(2.1.11) we see that the evaluation of o at t requires to use all the

coefficients. This tends to be unstable due to the alternation of signs of

the coefficients specially when n is large (depending upon the computer).

The ill conditioning of the system can be virtually eliminated using the

technique we describe now.

Let Q, R be the Q-R decomposition of E. That is, let Q be an

nxn orthogonal matrix and R be a 3 x3 upper triangular nonsingular matrix,

such that

	

Q*E -	 I R I	
(2.2.5)

And let us partition Q in the following way

Q*

	

Q* =	 1	 (2.2.6)

Q*2

where Q* is 3xn and Q2 is (n-3) x n.

Let

A - Q*A

	

Q*A	 _	 ^1
(2.2.7)

	

Q 211	 A

where Al E A3 and 112 e j-3.

The second equation now becomes:
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ETA = 0

ET Q A	 0

[ RT 101A = 0

RTAl = 0

11 1 	0	 (2.2.8)

The last equation is obtained using the nonsingularity of R. R is non-

nonsingular since t i , ..., to contains at least a P 1-unisolvent set.

We now use the first equation

KQfl + Ea = z

[KQ l KQ2] Al + QlR1a	= z

KQ2A2 + Q1Ra = z	 X2.2.9)

Multipiying now both sides by Q2 we obtain

Q2 K Q 2 11 2 + Q2Q1Ra = Qjz

or

Q2 K Q2 /1 2	 Q2z

since

Q2Q1	 0

Or, finally

A(12	 z`	 (2.2.10)
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where

A - Q2 K Q2

z - Q2z .

a can be easily obtained from (2.2.9)

Q1Ra - z - KQ2A2

or

Q*Q1Ra - Qiz - Qi K Q2A2

a - 
R-1[Qiz - Qi 

K Q2A2 1	 (2.2.11)

For an efficient computer evaluation of the products Qiz, Q2z , Q2 K Q2,

let us simply observe that

Q*z
1	 Q*z

Q2z

Q*KQl	 Q*KQ-,
Q* K Q -

Q2KQl	 Q2KQ2

Now the computation of Q*z and Q*KQ is easily done since Q, Q* are

obtained by a product of Householder transformations that is available for the

computation of such products when using a package like UNPACK (see [ 12 ]).

In order to solve (2.2.10) we first prove the following.

Lemma 2.2.1. The matrix Q2 K Q 2 is positive definite.

Proof. The columns of Q 1 generate E and the columns of Q 2 generate E1,

the orthogonal subspace of E. Then Q 2 represents the orthogonal projection

onto E1 written in terms of the basis given by the columns of Q 2 . Thus-

1%1
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V = Q2x a E1

On the other hand the function

n
cu(t) = iI l wi lt-ti

1
2 log jt-tij

with y F E l being a spline function and

0 < iM = uT K u

X 
a 3,n-3

(2.2.12)

(2.2.13)

since from (2.1.9)

J(W) _	 ui m(ti)
i=1

and J W cannot be zero since w is not a polynomial of degree 1. //

Now the system (2.2.10) can be solved using Cholesky ' s factorization.

As an interesting fact we might notice that A does not depend on the

data itself but only on the data points. So if many data taken at the same

data points are to be processed,the storage of the Cholesky's factorization of

A allows us to save a lot of computer time.

For a complete description of this method and a discussion of its numeri-

cal properties, see [ 21 ], [ 22 ], [ 43 ].

As we have already said, the computation of thin plate splines can be

very expensive if a large number of points is to be used. In the next section

we develop a practical method to avoid this problem in some cases. Here we

must also mention that the actual work towards the development of multidimen-

sional B-splines could be of great help when dealing with a large number of

points (cf. . [	 7 ]. [ 8 ], [ 26 D.
fk

_ ,may .* . ^ia^ ♦^s+^s -v.	
^ -	 ---
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2.3. A Practical Method for a Large Number of Poit.ts

In this section we assume that the number of data points is large and

well distributed within a rectangle [a,b] [c,d] c F2 . The idea (cf. [ 21

[ 22 ]) is to divide R, the given rectangle, into several smaller rectangles

overlapping each other and containing a reasonable number of points. We then

calculate a thin plate spline in each piece and stick the pieces together using

a partition of unity.

More precisely, let a - a 0 < al < ••• < am < b,	 a < b0 < b 1 < •••	 b  - b

and c - c0 < C  < • • • < C  < c,	 d < d0 < d1 < • • • < d  = d be partitions of

[a,b] and [c,d] respectively such that

	

ai < bi	i - 0,...,m

	

c i < di	i - 0,...,k

ai+l < b 	 i = 0,...,m-1

	

ci+l < di	 i = 0,...,k

These properties imply that

(ai ,bi) n (ai+1'bi+l) 0 0

(ci'di) n (ci+1'di+l) 0 0

m

U	 [ ai , :: i ] _	 [a,b]
i=1

k
U [ck ,dk ] - [c,d]

j=o

(2.3.1)

_S e* iifi. Yi y r V^- # — .
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m k
U	 U [ai,bij x [cj ,dj )	 [a,b] x [c,d]

i.1 ju0

The situation is illustrated in the following figure

We now assume that the number of data points included in

Rij - (a i ,b i ) x [cj ,dj ] is "reasonable." This means that: 1) The

computer time spent in the computation of a thin plate spline using that number

of points is reasonable according to the particular problem. 2) The number of

points is sufficiently large to represent the behj !^, ►tor of the function in

that region. 3) The number of points in the intersection of the regions is

enough to guarantee a smooth transfer from one region to another.

Of course all these conditions are extremely subjectir- , and the user has

to be experienced to know how to apply these conditions to his particular

problem.
	 IA

V
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Once the subdivision of R in Rij has been determined, let a ij be

the thin plate spline interpolating the data on the points belonging to Rij.

That is,

l T

where

J(o )	 min	 J(U)	 (2.3.2)
ij	

pab 2 L2(IIt^)

U(tk)=Zk

kalij

Iij	 {ka{1,...,n} 1 tkaRij^lai,bi1Xlcj,djJ}

Thus aij is going to be a "good" approximation of the unknown function

on Rij. In order to build an interpolant over R, we now "stick" the pieces

together using a partition of unity on the intersection of the rectangles.

Let w: ' R -+ IR	 be defined by

(x-l)2(2x+1)	 x a 10,11

W(x)	 0	 x > 1	 (2.3.3)

1	 x < 0

Then m a C1 (R) and

W(X) + (1 - w(x)) - 1	 x e R	 (2.3.4)

Theorem 2.3.1. Let aA, 
C  

be thin plate splines interpolating the data

over the rectangles RA and R  respectively.

RA	 / Rq n /	 RB
/ f

a0	b0
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0

Let 
aAB 

be defined by

aA(x,Y)	 (x,y) E RA \ R'B

aAB(x,Y)	
P(x)aA(x,Y) + (1-p(x))aB(x,Y) 	 (x.Y) E RA n RB

a B(x'Y)	 (x,Y) E RB \ RA

where
x -a0

0 0l

Then aAB interpolates the data on RA u RB and has continuous first

partial derivatives.

Proof. It is clear that aAB interpolates the data on RA a RB - R k n RB.

Let t  E RA n RB , then

aAB (tk) = P(xk)aA(tk) + (1 - P(xk))aB(tk)

= P(xt)$k + (1 - P(xk))zk = z 

where tk = (
xk,yk).

'C'AB
We only need to prove the continuity of aAB 

and - 8x along x = a0,

x = b0 . Both cases being similar we prove it along x - a 0 . We have

lim+ aAB (x,Y) - lim {p(x)aA(x,y) + (1-P(x))aB(x.Y)}

x;a0	
x-*a+0

= aA (aO9 Y)	 .

au
AB

Thus aAB is continuous across the line x = a0 . For ax we have

P 

?I
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F.
^t

Da AB aaA (x >Y)	 aaB(x,y)

	

ax (x.Y) - P (x)aA(x,Y) + P(x)	 ax	 + (1-P(x))	
ax

as (x, Y)
- p'(x)	 Bax

aQAB	 RYA(ao,y)

ax 
(X Y) s	

ax
0

and the result follows. //

Using this method we can stick together all the pieces on each horizontal

strip and then proceed in the same way to stick the strips together. The final

result is the following

aij (t)	 t 
E R

ij \ fRij-1 u Rij+l u Ri+1j u Ri-ij

W x-a i+1 a .(t) + 1
-w x-ai+1 l a	 (t)bi-ai+1 i3	 bi-ai+1J i+lj

t E Rij n Ri+l j \ (Ri j+l u Rij-1)

G(t ) a ^^d _c^ +lIai 

j (t) + 1 - 
	

ai +1 (t)t	 j+l j 	 j+1 	j (2.3.4)

t E Rij n Ri j+l \ (Ri+lj u Ri -lj

	

y-	 l	 y-,̂x

b -ai
+1 c.^ 

d -c,
+1 ai (t) + `1 - W 	

ai +l (t)li	 j j+1^ j 	 ' j
	x - a	 y-c	 y -c

+ 1 - w 
bi-ai+1	

w 
d -+1 ai+lj (t) + 1 - w1 ai+lj+l(t)

l 

t E Rij n Ri+l j n Rij+l n Ri+l j +1

k

. 
D,
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It has been proved by Duchon [ 14 ] that this interpolant keeps the

nice convergence properties of a thin plate spline. On the other hand our

numerical experience shows that it is a very appropriate method to deal with

a large number of points.

Remark. In the above formula we have made the convention

a0,j	 am+l,1	 oi3O	 oi,k+l - 0

3. A General Framework

The variational properties of natural polynomial splines in one dimension

lead Atteia [ 3 ] to give a general variational formulation for spline

functions. This idea is to consider three Hilbert spaces X, Y, Z and two

continuous linear operators T, A from X onto Y and X onto Z respec-

tively, then given z 6 Z a general spline of interpolation is the solution to

min I TUI1Y
uEx

A(u)=z

All the known cases of splines satisfying variational properties can be

found using this general approach. For details see [ 19 ]. Nevertheless,

In some cases it is somewhat difficult or not natural to use some Hilbert

space to make the splines fit into this model. For twat reason Duchon [ 14 ]

introduced the semi-Hilbert space model where he works with semi-reproducing

kernels. In this section we are going to give a slightly different formulation

using reproducing kernels because of its immediate stochastic interpretation.

i

.t •mss..► ,r-i..nr j. *_ a-^ ^ `- -	
---...

y.I
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3.1. Reproducing Kernels and Spline Functions

Let H be a repfoducing kernel Hilbert space (see [ 2 ], [ 27 J)

that is, a Hilbert space where the evaluation functionals are continuous.

H must be a subset of IR , the space of functions from X into ]R.

Fr

H c IRX 	(3.1.1)

Following Aronza ,jn [ 2 J this implies the existence of a function

K, the reproducing kernel, such that

i) K( • ,x) E H	 any x E X

ii) K(x,y)_

//

 K(y,x)	 (3.1.2)

iii) f(x) = 1f,K(-,x)/` 	 any f E H

where ^•,•^ denotes the scalar product in H.

Let 
}1' ..., X

n be continuous linear functionals from H onto 7R. And

let z E En be an arbitrary vector of real numbers. We define the spline

interpolating z l , ..., z 	 with respect to the functionals al, 	 n as

the unique solution to

min	 (3.1.3)
uEH

ai(u) =zi
i=l,...,n

The existence and uniqueness of 6 the solution to (3.1.3) is a result

of the projection theorem in a Hilbert space and the fact that {uEH I xi(u) =zi}

is a closed linear manifold in H.

The special interest of working with a reproducing kernel Hilbert space

is based in the following result.

J^
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Theorem 3.1.1. The unique solution to (3.1.3) is given by

n

8(x) _	 a  hi (x)	 (3.1.4)

i=1

where

hi(x)	 ai(K(-.x))	 (3.1.5)

and al , ..., n satisfy the linear system

n

J^laj X
i (hj) = zi	 i = 1,...,n	 (3.1.6)

Proof. Let A: H - En be the linear transformation

A(10 = 0.1 (P), ..., an(u))T

It is clear that 8, the solution to (3.1.3), is the orthogonal projec-

tion of 0 onto the linear closed manifold

M= {v e H l ai (u) = zi , i=1,...,n}

exists and is unique if and only if M is non-void. Moreover, we have

the orthogonality of the projection:

K0-8,u) = 0	 if A(u) - 0

In other words, 8 e N(A) 1 = R(A'). But

n
cc	 1A'(xl,..., n

) =	 L xihi
i=1

where hi (t) - ai (K(-,t)) is the representation of 
X  

guaranteed by the

k
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Ritz theorem. Then there exist a l , ..., an such that

n

	

8	 I aihi
i=1

But 6 also belongs to M, hence

n

	

ai(a) _	 1 aj ai (hj ) = z 
j=1

This completes the proof. //

As an example of use of this theorem we could try to get the thin plate

spline.

Of course here the functionals a l , ..., Xn are given by

X  W = u(t i )	 i = 1,...,n .	 (3.1.7)

Let us assume that {t 1 ,t2 ,t 3} is a P1-urisolvent set. And let

{pl' p29p3} be a basis of P 1 satisfying

3

kLl 
p i (t ,)pj (tk) = d ij	 (3.1.8)

Then it can be shown that (cf. [ 43 ]) D -2L2 (]R2 ) is a Hilbert space

with norm

32 2	
2)2	 2 2

[u(tk)] 2 +	 ^ + 2 aX y +	 (3.1.9)
ktl	 J2 ax	 ay

and reproducing kernel

)I
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3
2 log {t-s{ - 8L 3 

Pk(t) {6-t
k { 2 log {s-tk{

k=1

3c
IkIl Pk(s) It-tk

{ 2
 log {t-tk {	 (3.1.10)

+ 18Tr L	 Pi(t)p (s) { tj -ti { 2 log ^t j -t i { +	 L Pk ( t) Pk(s)

	

3	 k=1

Now using the theorem, the thin plate splines can be found solving the

linear system

n

	

I a^ K(t,t^)	 zi	 j = 1,...,n	 (3.1.11)
J=1

3.2. The Stochastic Approach

Let w be a random process indexed by X with covariance

	

E[wswt I - K(s,t)	 (3.2.1)

and zero mean.

Let L2 ( w) be the Hilbert space spanned by w x , x E X and their limits

in quadratic mean.	 L 2 (w) has the inner product

[U,v] - E[uv]	 .	 (3.2.2)

As in the last section, we denote by H the Hilbert space with the ' repro-

ducing kernel K.

It is a well-known result ( cf. [ 10 ])	 that H and L2 (w) are

isomorphic with the correspondence

f (x) = E [ wxU]	 (3.2.3)

f E H 1- ► y E L2(w) i
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Let al , ..., an be the linear functional of thepreceding section. It

is known that al , ..., an can be defined on w using the Isometry. Thus

a i (w) is going to be an element of L2 ( w) defined by the equation

hi(x)

We consider now the probl

W  given X 1 (w).	 n(w).

wx

= E[ xXi (w)I	 (3.2.4)

em of finding thebest linear estimator for

That is, we want to find

E[wx I al(w),...,an(w)]	 (3.2.5)

If we assume that the process is Gaussian, we can find wx as the least

squares predictor of wx, i.e., as the projection in L 2 (w) of W  onto

the linear space spanned by X1 (w) ' ..., Xn(w).

Thus, x is the solution to

n
minimize	 I I ai ai (w) - wx	 (3.2.6)

(al,...,an)EFn	 i=1	
L2(w)

and

n
^
)x 

=	 aiai(w)	 (3.2.7)
i=1

In order to find ai , i - 1,...,n, we have to solve the system of linear

equations given by the orthogonality conditions

n
E Ii ^laiai (w) - w

x 
x
i 
(W)0	 j	 1,...,n ,	 (3.2.8)

l_

or, equivalently,

n

1 Z a  E[a i ( w)aj (w)l	 E[wxaj(w)J
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and using the isometry again

nCi 1 ai 1hi , h^ /H = 
h 

j (x)
=
L 

Finally, using the fact that hi is the representer of 
X  

we get

n
ai Xi (hi )	 h^ (x)	 (3.2.9)

	

i=1	 .

	If we now assume that zl ,	 zn are realizations of the random

variables a l (w), ..., an (w) we get

n

	

W =	 aizi	 (3.2.10)
i=1

where

	

a	 E-1 (h1 (x), ..., hn(x))T

in other words

	

W 
	 = z T E-1 (h1 (x), ..., hn (x)) T 	(3.2.11)

If we now go back to Theorem 3.1.1 we see that

8(x) - wx

Theorem 3.2.1. Let w be a random Gaussian process indexed by X with zero

mean and covariance function K( • , • ). Then

8(x) - E[wx I ai (w) =zi , i-1,...,n]	 (3.2.12)

	

For further results see [	 ], 1	 ], 1	 ].	 1	 ]•

7^ 01 '1
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4. Constrained Interpolation

In the preceding sections we have considered the problem of interpolation

of an unknown function given its values at n are generally distributed points

of the Euclidean space IR . The hypothesis made on the function is generally

one of the kind: "f is smooth." This meaning, most times f e D -
2
 L 

2  
OR2)

or something similar, but in all cases we have assumed that f belongs to

some linear space and have used as interpolant the minimizer of a semi-norm

over the linear manifold of int a rpolants belonging to that linear space. As a

result, the interpolant is linear as a function of the data and the algorithms

necessary to compute it require the solution of matrix problems. Even if this

is sufficient for many problems, there are others where some nonlinear constraint

is naturally posed, as in the case of data coming from a positive function.

More generally, we could assume that some property of the function is known in

the form f E C where C is a convex closed set of D -
2
 L 

2 
OR 2 ).  The problem

is to find a "good" interpolant satisfying the nonlinear constraint f E C.

This problem has recently received much attention in one and two dimensions.

The interested reader should see the literature [ 18 ], [ 32 ], [ 35 ],

[ 36 ], and the references therein.

4.1. The Positive Thin Plate Spline

For these lectures we would only be interested in positive thin plate

	

splines (cf. [ 35 j, [ 36 j). Let zl , z2 , " " z 	 be positive real numbers

and let C be a compact subset of IR . We define the Positive Thin Plate

Spline as the unique solution to the minimization problem (cf. Th. 4.1.1).

	

—a s ^ rs... .-a-sr'.	 sus s . , . _
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minimize J(P)
UED 2L2(]R2)

u(tj )-zj , J-1,...,n

u(t) 4, tcc

(4.1.1)

where, as in the preceding sections J is defined by

2 2	 2	 2	 2 2
J(P) -	 ^ + 2 as x^ +

^ ax	 y	 ay

We first give an existence and uniqueness theorem.

Theorem 4.1.1. Let C be compact and assume that {t 1 , t2 , ..., tn ) contains

at least a P 1-unisolvent set. Then there exists a unique solution of (4.1.1).
2 2

Proof. Let P1 be the set of polynomials of degree 1, then H - D P

IR2
	 1

is a Hilbert space continuously imbedded in 
P	

The set
1

S - {u E D-
2 

L 
2 
OR 2 )  IP(t i )- zi , i-1, ...,n; y(t) Z0, tEC)

is clearly non-void and

S - S+Pl c: H

IR 2

1is closed since S + P is closed it P
1

n
S + P1 -	 n d_ i(zi) n d tl ([O,-))	 + P1

i-1 t	 teC

^2

and H is continuously imbedded in 
^
P1

Then there exists a uniq vt element d E H minimizing J(u) over S

06)	 is a norm in H.) The uniqueness of a comes from the fact than
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P 
	 n {U c D 2L2 (R2 ) I u( t1)-0 , i-1, ...,n) - t0)

since {tl , ., fln ) contains a P1-unisolvent set. //

It is also possible to give a general characterization .)f the solution

o. We give this characterization in Th. 4.1.2 but we omit the proof. The

interested reader is referred to [ 35 ).

Theorem 4.1.2. Let a be the unique solution of (4.1.1) and define

A - { t e C I Q(t)-0}	 (4.1.2)

A is a closed set. Then there exist a positive measure v with support

(v) c A and n real numbers al , ..... Xn such that

n

	

v = - iII 
X  

6 ti* K2 - v*K2 + P	 (4.1.3)

where p c P1 and K2 is the elementary solution of the biharmonic operator

	

K2 (r) - 8n P f (r 2 log r)	 (4.1.4)

Here * denotes the product of convolution. //

This last result is only of theoretical importance since it has not been

possible to use it in a ni=nerical algorithm allowing v to be found. In the

next section we present a numerical procedure allowing the solution to be found.

For convergence properties of constrained splines see [ 32 ], [ 35 ].

4.2. The Dual Algorithm

Our aim in this section is to present a special version of the general

algorithm by Laurent to solve constrained problems by dual iteration (cf. [ 20 ]).

J.
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We also mention the special numerical methods used to compute the kth iterate.

The idea of the algorithm is to construct a sequence of half-spaces D 

and solve in each iteration the constrained problem.

(P )	 min	 J(U)	 (4.2.1)
k	 UeD-2L2(IIt2)

u(ti ) M zi , i-1,...,n

u 
eDk

The sequence {a } is then shown to satisfy the following properties
K

(cf . [ 20 })

i) J(Qk )	 J(Q
k+l) 5 J(a)

ii) Dk D {)j ED 2L2 (R2 ) Iu(t) Z0, toc)

iii) l:m a  ! Q
k—

where the convergence can be taken over H2(C).

The starting point of the sequence is the unconstrained thin plate spline.

That is, the solution of

J(Q )	 min	 J(U)	 (4.2.2)
0	 U£D 2L2(]t2)

U(ti)nzi,

Step 0. Let b0 E R2 be a solution of

00(b0)	 min a(t)	 (4.2.3)
tEC

t
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If a0 (b0) 2 0 then a - a0 and the algorithm stops. Otherwise set k - 0

and proceed to step 1.

Step 1. Let

D1 - { U a D 2L2 ( R2 ) I U(b0 ) ^0}

and let al be the unique solution of

minimizr,	 J(u)
U ED 2L2m2)

U(ti )-zi , i-1,...,n

U a D1

And set b  as a solution to

al (bl )	 min aI(t)
tac

Step 2. Let k '- k+l..

If we are lucky enough ak (bk) 2 0 and a - ak . Stop.

Otherwise, let

D'k - 
D  n {ua D 2L 2 (R2 ) ( L(bk ) 20}

and let ok+l be the solution to

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

minimize	 J(U)	 (4.2.8)
uED-2 L2 (3R2)

U(t i)-zi , i-1,...,n

U a $k

Using now the Kuhn-Tucker conditions we know that there exist positive

constants vj , j - 1,...,nk such that if we set

k

- I - ____ . 
__  	

.. -	 - _"fi%' am "^A__W - - - - -0  	
D C
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nk

J^
)^ u(bj)-o
1 

we have

J(6k+1 ) 	 m 2n	 1(0
ueD

_ 
z oR 2 )

u(ti ) = zi , i=l,...,n

u ED k+1

Now define bk+l as a solution to

ak+1 (bk+1 )
 - min ak+l(t)

tEC

(41,77I

(4.2.9)

(4.2.10)

(4.2.11)

and go to step k.

The preceding calculations are repeated until a convergence criterion is

satisfied. Generally this criterion is given in the form

6k+1 (b k+1
	 -e	 (4.2.12)

where c > 0 is a tolerance given by the user.

Remarks

(1) The computation of Q 1 is not as hard as it seems to be since

Q l ( b0 ) = 0 .	 (4.2.13)

Otherwise the constraint N E D1 would not be active and the solution

might give c1 (b0) > 0 which is impossible since in that case c0 = a 

Thus Ql is indeed the solution to the simple interpolation problem

k
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minimize	 J(u)
	

(4.2.14)
lleD-2L2(R2)

U(t 
i 
) = zi , i=1,...,n

U(b0)=0

And al is of the form

Q1(t) _	 it 	 log ^ti-t^ + alt-b0
1
2 log It-b 0 1 + q(t)

i=1

with q e P1.

Then 
a1 

is obtained solving a linear system.

Similar considerations apply for the computation of `ik+l in step k.

(2) From the last remark it appears that each iteratic-i costs the solution

of one or two linear systems where the matrices which depend on the knots are

different from one step to the other. This could be very expensive to do unless

we know something more about the systems to solve.

Here the key remark is that the difference between the original matrix

(to compute al) and the matrix used in the computation of a  
is only given

by a rank 1 perturbation. Then we can use this fact to solve the system in

step k using the solution in step 0 and the Cholesky factors obtained there.

(For details see [ 35 1)-

In a recent Ph.D. thesis presented at the University of Wisconsin, M. Villa-

lobos has used a different approach to give an approximate solution to (4.1.1).

His approach basically consists in the discretization of the constraints,imposing

a regular grid over C and replacing u(t) Z- 0, t e C by

U(gk) ' 0 ,	 g  e G

G: grid over C. (For details, see [ 36 1).

J^



- 41 -

5. Thin Plate Smoothing Splines

In the preceding sections we have considered the solution of some inter-

polation problems in two dimensions. In all the cases we have assumed that

the data are exact and we wanted to obtain a smooth surface passing through the

points (ti ,zi ) E IR . Our aim in this section is to present the case of

noisy data. Thus, in the first part we present the theoretical results giving

a characterization of the thin plate smoothing spline and in the second part

we give the numerical methods used in the compucation of such splines.

5.1. Existence, Uniqueness and Characterization

PMR

A.

Al

As in Section 1.2, we assume the model

zi = f(ti) + Ei ,	 1 = 1,2,...,n
	

(5.1.1)

where f E D
-2 

L 
2 
(]R2)  is unknown and the E i 's are supposed to be realiza-

tions of independent identically distributed Gaussian variables.

In order to approximate f, we introduce the thin plate smoothing spline

of parameter X > 0 as the unique solution to (cf. [ 13 ], [ 14 ])

n
minimize jXJ(jj) + 1	 (U(ti)-z ) 2	 .

UED 2L 2 (IR 2 )	 ni=1	 i
(5.1.2)

As in the one-dimensional case, a controls the tradeoff between the

smoothness of the solution measured by J(U) and the approximation to the

data measured by

1 
n 

(u(t i) - z )2L
n i=1	

i	 .

b
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In order to prove the existence and uniqueUess of an X , the solution

to (5.1.2), let us first define the nxn symmetric semi-positive definite matrix

0 as

y  Q y	 min	 J (U)	 (5.1.3)
}1 ED 

2L2oR2)

u(ti)-y i , i=1,...,n

yT P&y represents the value of J a: Ty , the thin plate spline inter-

polating yi at ti , i = 1,...,n. Civzn that y -> Qy is linear, the trans-

formation y -r J(Qy) is quadratic hence ►.ho existence of S2.

Now we write (5.1.2) in the following way

n
min	 min	 ^J(u) + 1 I (u(tl)_z)2
yElf	 U ED-2L'(IR 2 	i)	 ni=1 

n
min	 min	 lJ(u) + 1 (y -z )2
y EJ u ED-2 L 2 ( IR 2 )	

ni=1 i i

U(t i)=yi , i=l,...,n

n
= min.^1	 X min	 J(U)	 + 1 I (y 

i - 
z i)2

y e]K	 UED-
2L2(IR2)	

n 
i=1 

U(ti)=yi,i=l,...,n,

n
mine ay T Sty + 1 (y -z ) 2	 (5.1.4)
ye1K	

ni=1 1 i

The solution y to this problem is easily found by differentiating and

setting the gradient equal to zero. We obtain

(nXQ + I)y = z .	 (5.1.5)

=

_ I.

--	 -	 - .may s .^sr +►-i-*ir j ' ?"^- +	 -	 ^^
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And an,X is obtained interpolating y  at t i , i = 1 ...... n using

a thin plate spline. As in the one-dimensional case, ( 5.1.5) is only of theore-

tical use as we shall see later. A more practical result is given by:

Theorem 5.1.1.	 Let {t1 , ..., tn } contain at least one P 1-unisolvent set.

Then there exists one and only one solution an X to (5.1.2). Moreover, there
.

exist n+3 real numbers 
X1' ..., a

n ; al , a2 , a3 such that an , has the

expression

an,X (t) _	 XiIt-tiI2 log It-t
1
1 + al ti + a 

2 
t 2 + a3	 (5.1.6)

i=1

where t = (ti lt 2).

The coefficients al , ..., an , al , a2, 
0'3 

are the solutions of the system

n
8maaa i +

	

	 I Xj K(ti-tj ) + alt1 +a2 t2 + a 3 = zi ,	 i	 1,...,n
j=1

1 aj ti	 o
j=1

(5.1.7)

^ aj t2oj =1
n

aj = o
j=1

Proof. See [ 13 ],	 [ 14 ].

In the next section we use

Now we are interested in obtain

process. To do that, let p  <

increasing order and let Q be

this formulation to compute the smoothing spline.

ing an interpretation of an,X as a filtering

P2
 s ••• s 

P  
be the eigenvalues of Q in

the orthogonal matrix diagonalizing Q. Then

RW _	 - s .ra►.. .-♦ eft s .	 zc a	 __^... a
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= Q E Q*
	

(5.1.8)

F

where

E	 diag 
(P1'	 Pn)

Then (5.1.5) becomes

y _ (I + naE) -1 z'

where

y = Q*y

	

z	 Q*z

Hence

_	 1

	

yi 	 T+-nap, zi

(5.1.9)

(5.1.10)

But it has been observed, and proved in some cases [ 30 ], [ 39 ] that

P ti C A4	 ,	 ( 5.1.11)

then

_ 1

y i 	 1+Cain zi

which turns to be again a low-pass Butterworth type filter. For details see

[ 35 ],	 [ 39 ],	 [ 43 1.

5.2. The Computation of a and a n X

As in the one-dimensional case, the estimation of X from the data is a

very delicate problem. One of the methods that is becoming the most popular

to solve this problem is the Generalized Cross-Validation which amounts to

minimizing the GCV function
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r	

t	 .mot

n

	

n 

1 (a
	 (t i 

)-z) 2

	

^ M = i=1 1	 2	
(5.2.1)

1 - n tr. (A (X) )

where A (a) is given by

	

A(a) _ (I + nXQ) -1	(5.2.2)

Thus, we need an algorithm to compute Qn X and one to compute

tr. (A(X)). We begin with the computation of an X.

As we have seen in Th. 5.1.1, the computation of Qn ^ involves the solu-

tion of a linear system in the n+3 coefficients 
X1' ..., X n ; al' a2 , a3.

The linear system to be solved is given by equations ( 5.1.7) or, using the

notation of Section 2.2, in matrix form

	

(87na + K)A + Ea = z	 (5.2.3)

E T A	 Q

Thus, the linear system to be solved has the same form as (2.2.2) and

using the same technique, let Q, R be the QR decomposition of E

Q*E = [R]

where Q* is nxn and can be decomposed as

Q* Q*

Q2

and Q* is 3xn, Q* is (n-3)xn.

Nd
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Now setting

n
nl

=
A2

the equations become

nl = 0

	

Q2(snnal + K)Q2n2 = Q2z	 (5.2.4)

Ra = Qiz - Qi K Q2A2

This linear system can be easily solved using Cholesky's decomposition

and all the remarks given in the case of interpolation apply to this case.

The computation of tr. (A(:.)) requires additional work. In [ 35 ]

we proved that in some cases the eigenvalues of Q can be well approximated

by those of a fourth-order differential operator, but in two dimensions this

is too complicated to calculate and a direct evaluation of the eigenvalues

is necessary. We first obtain an expression for 0; to do this we consider

the thin plate spline interpolating y = (yl,...,yn). Thus its coefficients

6 1'	 6n; al' a
2' a3 satisfy the system

Ko + Ea = y

E TA	 = 0

and using the notation

	Qlo	 nl
I1 = Q*A _

	

Q2L	 112



Now we observe that from Th. 2.1.1 we have

J(a ) _ AT K A

_ ZTQ* K QZ	 (5.2.6)

_ A 2Q* K Q2A2	 .

Using now (5.2.5) we finally get

J(Q)	 T(Q* K Q) -1y	 y g 2	2 Q2Y

and

S2 Q2 (Q* K Q2)-lQ2	 (5.2.7)

Finally, we observe that the eigenvalues of 0 are those of Q2KQ2

except for the first three that are equal to zero, then

tr. (I +nX 2) -1 = 3 + tr. (I+ nXQ*KQ
2) 	 (5.2.8)

Thus, if we want to compute tr. (A('.)) many times, as is necessary when

minimizing the GCV function, we first compute the eigenvalues of Q2KQ 2 and

then use them to compute tr. (AM). For more details and Numerical experiences

the reader is referred to [ 35 ], [ 36 ], [ 43 ].

i
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6. Non-variational Techniques

As we have pointed out before, the methods we have exposed here are

essentially generalizations of splines in one dimension using the variational

properties of those functions. We have chosen this way because of its close

relationship with stochastic estimation and because it appears to be at

present the only technique ised for scattered data (when referring to splines).

Many other generalizations are possible, and we will briefly describe two of them

in these sections. For a detailed discussion see the references below.

6.1. Tensor Product Splines

The first generalization of one-dimensional splines to many dimensions has

been given using tensor products. More precisely, consider a square [a,b]X[c,d]

in IR2 and two partitions, a - a l < a2 < ••• < an = b; c - cl < c2 < ••• < cm 	d

of [a,b] and [c,d] respectively. Also let B 1 , 1 - 1, ..., n+1 and

B2, j - 0, ..., m+l; the B-splines based on the knots

{al ,al ,al ,al ,a2 ,a3 ,...,an ,an ,an , n} and {cl,cl,cl,cl,c2,c3,...,cm,cm,cm,cm}

respectively.
1 n+l

As we have already said (cf. Section 1.1), 
{BiJi-0 

is a basis for the

space of twice differentiable piecewise cubic polynomials based on the knots

{al , ..., a}.
n

We now define a space of tensor product splines S on the grid (ai,ci),

i	 1,...,n; j = 1,...,m as the linear space spanned by the tensor product
n+1

of the basis {Bi } i=0 ; {B^ }J0 . That is, s e S if and only if

n+l m+l
s(x,Y) -	 7	 1 ai Bi(x) B^(y)

1-1 i-0
(6.1.1)

t

D
4W
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for (x,y) E [a,b]x[c,d] and aij r. JR2 for i - 0, ..., n+l; j - 0, ..., m+l.

Or, in other words,

n+l m+l
s	 ^	 1 aij Bi ® B^

i-0 j-0

It is well known (cf. [ 1 ], [	 ], [ 26 ]) that S is a linear

space of dimension (n+2) x (m+2) . Thus, the complete determination of s from

interpolation conditions requires to give 2(n+m+2) additional boundary condi-

tions. A usual choice for these conditions is:

Hermite type
as
ax 

( al , cj ) - given constant ,	 j - 1,...,m

a

as

a ax (an' cj ) ' 
given constant ,	 j - 1,...,m

Ds 
(ai , ci ) - given cons-ant ,	 i - 1,...,n

as
ay 

(ai' cn) - given constant ,	 i

a2s
axay (

al'cl) - constant	 (6.1.3)

2
axay (al,cm) - constant

-	
a2
axa (

an' cl ) - constant

2
axay (an'cm) - constant

As in the one-dimensional case these conditions produce optimal convergence

rates but as it was already pointed out, they require some additional informa-

_ -	 ..	 ry st . ter' ^-a^...g =	 3t a
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tion on the function that is not always available. (For other choices see

[	 9	 ].	 [ 26 ])

The functions in the space S are piecewise bicubic. This means

that in each subre-tangle [ai ,ai+1 ] " 
[cj,cj+l] the function is a bicubic

polynomial, i.e., a function of the form

p (x . y) - q 0 (x) + ygl (x) + y2g 2 (x) + y3g 3 (x)	 (6.1.4)

where 
q0' ql' q2' q3 are cubic polynomials.

Moreover, this function s e S has continuous derivatives as
	 as

ax '	 ay •

a 2 s	 a2s	 a 
2 
s

axay '	
ax2 

9	 ay2 .

Finally, it is interesting to say that the solution of the linear system

in aij , j - 0,...,m+l, i - 0,...,n+l, can be efficiently performed using

very specialized techniques (cf. [ 1 ], [ 9 ], [ 26 ]). For further

details the reader is referred to the extensive literature in this area.

6.2. Multidimensional B-splines

A more recent approach to the problem of multidimensional data has been

given by DeVore, Dahmen, Micchelli and others [ 7 ], [ 8 ], [ 26 ].

This new approach is attracting much attention recently, mainly from potential

users in finite elements codes.

The idea of this method is to generalize the B-splines to several dimen-

sions. The idea is interesting because the two main problems arising with thin

plate splines, that is, full system of equations and instability in the evaluation,

could be solved when using a local support basis. Unfortunately, until now

the theory of multivariate B-splines seems too :omplicated to be used in

practice. For details the reader is referred to [ 7 ], [ 8 ] and the

6
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references therein. Here we only give the basic idea of the construction.

To do this we go back to the simplest one-dimensional case, the P.-splines of

degree 1. '*nese are defined as

M(xl' x2' x3' t) - 6x
1' x2' x3 (t-x)

+ 	! 6.2.1)

where we have made explicit the dependence of the B-spline on x l , x2 , x3,

the knots of the spline. A typical plot of M is given below

"1	 "2	 "3

Of course the use of (6.2.1) to define the multi-dimensional B-spline

would require the definition of a multivariate divided difference. Thus, this

way seems difficult. However we can still generalize (6.2.1) if we observe

that we can give a geometric interpretation of this definition. To do that,

let 
(xl' yl ) ' (x2 9y2 ) ' 

(x3,y3) be three points in general position in IR2

(i.e., they form a triangle)

1%1

1	 -2	 ..	 -3

ti
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Now for given x a ]R2 define R(x) as the volume in IR2 of the set

I x . {y I (x,y) a T)
	

(6.2.2)

where

T - Triangle with vertices (x
l' y l ) ' (x2 ,y2), (x3,y3)

Then

M(x) - volm ](I x)	 (6.2.3)

It is clear that M has the same form of M(x l ,x29 x3;-) except maybe

for its maximum value. Thus ( 6.2.3) is an alternate definition for M. Clearly

this function does not depend on (yl,y2,y3) but only on the volume of T.

The generalization to IR S is now clear. Let o be a unit volume simplex

in IR
S+k 

and define for x E 1RS the function

M a W - voJ Rk { U a IRk I (x, v) £Q )	 (6.2.4)

This function is a "smooth" piecewise polynomial with support given by the

convex hull of the projection of a in IR

Most of the classical results on one-dimensional B-splines can be obtained

with these new functions. For example: recurrence relations, integral forms,

etc.	 See	 [	 7	 ),	 [ 8	 J,	 [ 26 ].

6.3. Conclusion and Comments

Many other subjects might have been included in a complete treatment of

two-dimensional or multidimensional splines. The subject is an active area of

research and the references given below are only a sample of the extensive

literature in the area. The -interested reader should consult the symposium

on multivar iate approximation and related research meetings to have a better

idea of the most recent results.

D
.:^. d
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